INVESTIGATIONS ON ORGANOTIN, ORGANOLEAD, LEAD(IV), AND LEAD(II) DITHIOLATES

KARIN GRÄTZ, FRIEDO HUBER,

Lehrstuhl für Anorganische Chemie II, Universität Dortmund, Postfach 500 500, D-4600 Dortmund 50 (F.R.G.)

ARTURO SILVESTRI, GIUSEPPE ALONZO and RENATO BARBIERI

Gruppo di Chimica dei Composti Organometallici, Istituto di Chimica Generale, Università di Palermo, 26-28, Via Archirafi, I-90123 Palermo (Italy)

(Received January 29th, 1985)

Summary

Bis(triorganometal) 1,2-dithiolates $(R_3M)_2S_2R'$ [(HS)₂R' = C₇H₈S₂ for toluenedithiol-3,4 (H₂TDT); M = Sn, Pb; R = Ph; or (HS)₂R' = C₁₀H₁₄S₂ for 1,2-dimethyl-4,5-bis(mercaptomethyl)benzene (H₂DBB); M = Sn, R = CH₃, C₆H₅; M = Pb, R = C₆H₅], diorganometal 1,2-dithiolates R₂MS₂R' [(HS)₂R' = C₆H₆S₂ for 1,2-dimercaptobenzene (H₂DMB); M = Pb, R = CH₃, C₂H₅, C₆H₅; or (HS)₂R' = H₂TDT; M = Sn, R = CH₃, C₆H₅; M = Pb, R = C₆H₅; or (HS)₂R' = H₂DBB; M = Sn, R = CH₃, C₆H₅; M = Pb, R = CH₃, C₂H₅, or (HS)₂R' = C₈H₆N₂S₂ for 2,3-dimercaptoquinoxaline (H₂QDT); M = Pb, R = C₆H₅] and some lead(IV) and lead(II) dithiolates Pb(S₂R')_n [(HS)₂R' = H₂DMB, n = 2; (HS)₂R' = H₂TDT, n = 2; (HS)₂R' = H₂DBB, n = 1 or 2] have been prepared. Vibrational, ¹H NMR, and Mössbauer spectroscopic data are consistent with pentacoordination of tin in R₂SnTDT and with tetracoordination of tin in R₂SnS₂R' and (R₃Sn)₂S₂R' in the solid state. The soluble compounds are monomeric in solution. Coupling constants for the methyltin compounds indicate tetracoordination in solution.

Introduction

Knowledge of organotin and organolead derivatives of aromatic dithiols is limited to some derivatives of 3,4-toluenedithiol (H₂TDT): R₂MTDT (M = Sn, Pb; R = Me, Ph) [1-5], and various N-donor [2] adducts and halide complexes of R₂SnTDT [6]. We were only recently able to prepare and characterize the first 1,3-dithiolates (R₃M)₂(C₆H₃XS₂) and R₂M(C₆H₃XS₂) (M = Sn, Pb; X = H, Cl) [7,8]. As a continuation of this work, and as part of our investigations of organometal derivatives of oligofunctional compounds, we synthesized triorganotin and triorganolead

TABLE 1

PHYSICAL PROPERTIES AND ANALYTICAL DATA FOR ORGANOMETAL, LEAD(IV), AND LEAD(II) DITHIOLATES

 $[C_7H_8S_2 = toluenedithiol-3,4 (H_2TDT); C_6H_6S_2 = 1,2-dimercaptobenzene (H_2DMB); C_{10}H_{14}S_2 = 1,2-dimethyl-4,5-bis(mercaptomethyl)benzene (H_2DBB); C_8H_6N_2S_2 = 2,3-dimetcaptoquinoxaline (H_2QDT)]$

								-
Compound	M.p.	Method	Yield	Analysis (F	found (calcd.)	((%)	Molecular weight ^a	Solvent "
	(C)		(%)	c	H	Pb	(Found (calcd.))	
$Me_2Sn(C_7H_6S_2)$	110	1	46	35.66	3.86		310	CH,Cl,
C ₉ H ₁₂ S ₂ Sn				(35.66)	(3.96)		(303)	4
Ph ₂ Sn(C,H ₆ S ₂)	153-154	1	4	53.24	3.89	ł	424	CH ₂ Cl ₂
C ₁₉ H ₁₆ S ₂ Sn				(53.42)	(3.75)		(427)	1
$Me_2Sn(C_{10}H_{12}S_2)$	114	1	77	41.2	5.2	ı	347	CHCI,
C ₁₂ H ₁₈ S ₂ Sn				(41.77)	(5.26)		(345)	5
(Me ₃ Sn) ₂ (C ₁₀ H ₁₂ S ₂)	43-44	e	38	36.80	5.80	١	526	CHCI
C ₁₆ H ₃₀ S ₂ Sn ₂				(36.68)	(5.77)		(523)	
$Ph_2Sn(C_{10}H_{12}S_2)$	178-183	1/2	79	56.35	4.85	ı	465	acetone
C ₂₂ H ₂₂ S ₂ Sn				(56.31)	(4.73)		(469)	
(Ph ₃ Sn) ₂ (C ₇ H ₆ S ₂)	111	e.	62	60.40	4.40	ł	835	CHCI
C43H3652Sn2				(60.45)	(4.25)		(854)	•
$(Ph_3Sn)_2(C_{10}H_{12}S_2)$	73	e.	79	61.20	4.75	s	895	CHCI,
C46H42S2Sn2				(61.64)	(4.72)		(896)	I
Me ₂ Pb(C ₆ H ₄ S ₂)	180–250 °	4	67	25.53	2.20	54.8	371	acetone
C ₈ H ₁₀ PbS ₂				(25.45)	(2.67)	(54.89)	(377.5)	
Me ₂ Pb(C ₁₀ H ₁₂ S ₂)	110-112 ^d	4	68	33.37	4.26	47.6	435	снсі,

Et, Pb(C, H, S ₂)								
	180-250	4	70	29.67	3.36	51.0	401	acelone
C ₁₀ H ₁₄ PbS ₂				(29.62)	(3.48)	(51.09)	(405.5)	
$Et_2Pb(C_{10}H_{12}S_2)$	92–94 ^d	4	67	36.24	4.68	44.6	491	CHCI,
C14 H 22 PbS2				(36.42)	(4.80)	(44.88)	(461.7)	
Ph ₂ Pb(C ₆ H ₄ S ₂)	151 ^d	4	82	43.14	3.08	41.3	526, 516	CHCl ₃ , acetone
C ₁₈ H ₁₄ PbS ₂				(43.10)	(2.81)	(41.31)	(201.6)	
$Ph_2 Pb(C, H, S_2)$	154–155 °	4	86	44.17	3.23	40.1	521, 524	CHCl ₃ , acetone
C ₁₀ H ₁₆ PbS ₂				(44.26)	(3.13)	(40.18)	(515.7)	
$Ph_2 Pb(C_{10}H_{12}S_2)$	110-112 °	4	81	47.23	3.92	37.2	559	CHCI,
C ₂₂ H ₂₂ PbS ₂				(47.38)	(3.98)	(37.14)	(558)	
$(Ph_3Pb)_2(C_7H_6S_2)$	142-144	4/3	6	50.44	3.84	40.1	968	acetone
C43 H 36 Pb2 S2				(20.08)	(3.52)	(40.18)	(1031.3)	
$(Ph_3Pb)_2(C_{10}H_{12}S_2)$	92	4/3	78	51.25	4.06	38.4	1073	CHCI,
C46 H 42 Pb2S2				(51.48)	(3.94)	(38.61)	(1073.4)	
$Ph_2 Pb(C_8H_4 N_2 S_2)$	198 d	4	76	44.00	2.60	37.3	536	DMSO
$C_{20}H_{14}N_2PbS_2$				(43.39)	(2.55)	(37.42)	(557.7)	
$Pb(C_6H_4S_2)_2$	250 °	4	89	28.36	1.78	43.0	84	
C ₁₂ H ₈ PbS ₄				(29.56)	(1.65)	(42.49)		
Pb(C,H ₆ S ₂) ₂	250 °	4	80	33.00	2.28	40.1	8	
C ₁₄ H ₁₂ PbS ₄				(32.61)	(2.35)	(40.18)		
$Pb(C_{10}H_{12}S_2)_2$	113–127 ^d	4	75	39.95	4.05	35.5	8	
C ₂₀ H ₂₄ PbS ₄				(40.01)	(4.03)	(34.54)		
$Pb(C_{10}H_{12}S_2)$	141 °	4	65	29.71	3.22	51.3	×	
C ₁₀ H ₁₂ PbS ₂				(29.76)	(3.00)	(51.35)		
^a Determined osmometrica	Ilv in CHCl.	CH,CJ, CCI	4. benzene, ar	id acetone at	37°C. in DN	ISO at 90°C.	^h Solvent for molecu	lar weight measureme
^d Determined osmometrica	lly in CHCl ₃ ,	CH ₂ Cl ₂ , CCl	4, benzene, ar	id acetone at	37°C, in DN	ISO at 90°C.	^b Solvent for mole	5

1,2-dithiolates, which had not previously been mentioned in the literature. These along with the first examples of some other unknown types of compounds, namely organolead and organotin derivatives of 1,2-dimethyl-4,5-bis(mercaptomethyl)benzene (H₂DBB) and diphenyllead quinoxaline-2,3-dithiolate (Ph₂PbQDT) [2,3-dimercaptoquinoxaline: H₂QDT] are described below, as well as some other new diorganolead 1,2-dithiolates. We have also made some lead(IV) and lead(II) dithiolates. The 3,4-toluenedithiolates M(TDT)₂ and related compounds (M = Sn, Pb) [2,3,6,9,10] and PbTDT [11] have been studied before.

Results and discussion

The compounds studied are listed in Table 1 along with the methods of preparation, yields, analytical data, molecular weights, and melting points. The lead compounds are conveniently obtained by ligand exchange starting from the appropriate organolead acetate, lead(IV) acetate, or lead(II) acetate and the dithiols. The acetate R_3 PbOAc (R = Me, Et) reacted with H_2 DBB at -10 to 30°C in acetone, but only decomposition products could be isolated. Reaction of R_3 PbOAc and H_2 DMB $(H_2DMB = 1,2$ -dimercaptobenzene) under the same conditions occurred only to a minor extent. The yellow reaction product decomposed upon attempted isolation. Ph₂SnDBB was obtained when freshly prepared diphenyltin oxide was treated immediately with H₂DBB. The alkali chloride method was used to prepare R₂SnTDT (R = Me, Ph) [2] and Me₂SnDBB. During all the procedures in the preparation of organolead dithiolates light had to be excluded and reactions had to be performed at or below 0°C. The sensitivity of dithiols to oxidants must always be borne in mind. All organotin dithiolates prepared in this work are colorless. The lead(IV) and lead(II) dithiolates are yellow to orange, and the organolead dithiolates are yellow, except for $(Ph_3Pb)_3DBB$ which separates after its preparation as white crystals, which turn yellow on exposure to light. The organolead derivatives must be stored at low temperature. Most of them decompose on or before melting. No conclusions regarding definite steps of thermal decomposition could be drawn from DTA/TG measurements.

The organotin dithiolates, the dialkyllead derivatives of H_2DBB and H_2DMB , and the phenyllead dithiolates with the exception of Ph_2PbQDT are soluble in CHCl₃ and/or acetone. In such solutions they are monomeric (see Table 1). R_2PbDMB (R = Me, Et) undergoes aging, and after some days it dissolves completely in DMSO only at about 90°C. Ph_2PbQDT also is soluble in DMSO, and is monomeric in this solvent. The dialkyllead derivatives of H_2TDT requires a temperature of 90°C for dissolution in DMSO, and decomposition occurs at this temperature. The lead(II) and the lead(IV) dithiolates are insoluble in common organic solvents, but the lead(IV) dithiolates show some solubility in pyridine. All the compounds are insoluble in water and under normal conditions no hydrolysis occurs.

The IR and Raman data are listed in Table 2. The Raman spectra of some lead and organolead dithiolates could not be measured because of the deep color or decomposition. The $\nu(SH)$ band was missing in all the spectra. Frequencies in the range 280-380 cm⁻¹ can be assigned to $\nu(MS)$ [12-15]. Except for $\nu(CS)$ the characteristic absorptions of the organic groups at M and of the dithiolate ligands were practically unchanged in the products compared with those of the appropriate

TABLE 2

VIBRATION SPECTRAL DATA FOR ORGANOMETAL, LEAD(IV), AND LEAD(II) DITHIOLATES (cm^{-1})

Compound	₽(C-S)	$\nu_{as}(M-Y)^{a}$	$\nu_s(M-Y)^a$		ν (M−S)	
$\overline{C_6H_6S_2(H_2DMB)}$	660	_	_		-	
Me ₂ PbDMB ^b	656	_c	463w	355	345	
Et ₂ PbDMB ^b	d	473	460, 430	355	340	298
Ph, PbDMB	650	_ ^e	_e		350	
-	(642)	(235)	(205)		(351)	
Pb(DMB) ₂	658	_	_		356	
· · · -	(657)	-	-			(276)
$C_7H_8S_2$ (H ₂ TDT)	687	-	-		-	. ,
	(690)	-	_		-	
Me ₂ SnTDT	637	555s	524vs	376	335	310
•	(635)	(548)m	(523)vvs	(369)	(330)	(310)
Ph ₂ SnTDT	678	287	_e	358	338	311
-	(661)	(270)	(222)	(370)	(342)	(322)
(Ph ₃ Sn) ₂ TDT	660	265	_*	375	363	335
	(658)	(267)	(222)	(375)	(363)	(338)
Ph, PbTDT	631	_e	_e	352	. ,	312
•	(640)	(235)	(205)	(350)		(315)
(Ph ₃ Pb) ₂ TDT	617	_e	_*	350		
	(640)	(225)	(200)	(350)		(305)
Pb(TDT) ₂	635		-	. ,	369	. ,
· · · •						(320)
$C_{10}H_{14}S(H_2DBB)$	678	-			_	. ,
Me ₂ SnDBB	688	548s	527s		345	
2	(688)	(544)m	(525)vs		(333)	
(Me ₁ Sn), DBB	653	538vs	513s	363	344sh	
	(675)	(538)vvs	(513)m	(363)	(345)	(332)
Ph ₂ SnDBB	630	265	_e	365	345	()
-	(660)	(263)	(225)	(360)	(345)	
$(Ph_3Sn)_2DBB$	662	268	_e	()	34 0	
	(658)	(265)	(217)		(345)	(310)
Me ₂ PbDBB ^b	628	499s	462s	365	333	298
Et, PbDBB	665	478	448		339	298
2	_d	(480)	(450)			(297)
Ph, PbDBB	677	`_é	`_ -	355	322	290
-	(645)	(224)	(207)		(315)	(292)
(Ph, Pb), DBB	675	225	210		310	(=)
5 /2	(645)	(224)	(210)		(309)	(298)
Pb(DBB),	678	- -	· -		355	··-/
× /•	(680)					(300)
PbDBB ^{<i>b</i>}	682	-	-		390	(200)
C ₈ H ₆ N ₂ S ₂ (H ₂ ODT) [/]	658	_	-		_	
Ph,PbQDT 8	644	_*	_"		d	
• •	(642)	(235)	(208)	(324-30	00) br	
	. ,	·/	·/			

[Raman data in parentheses; formula abbreviations see Table 1]

^a Y = CH₃, C₆H₅. ^b Decomposed in laser beam during Raman measurements. ^c Superimposed by ligand vibrations. ^d No assignment made due to low intensity in the appropriate range. ^e Not observable. ^f p(C-N) 1259 cm⁻¹. ^g p(C-N) 1270 (1267) cm⁻¹. dithiolate educt. Modes $\nu(CS)$ were more or less shifted to lower wave numbers (see Table 2). From these observations complete reaction of the SH groups of the dithiol substrates and formation of M-S bonds (M = Sn, Pb) could be inferred.

The IR and Raman bands of solid H_2QDT at 3110 and 3090 cm⁻¹, and at 1630 and 1610 cm⁻¹, respectively, can be assigned, following ref. 16, to $\nu(NH)$ and $\delta(NH)$. These absorptions are missing in the spectra of solid Ph_2PbQDT , but there is a broad Raman band at 300-325 cm⁻¹, which can be assigned to $\nu(Pb-S)$ [14,15]. From these observations it can be concluded that QDT^{2-} is bonded in its enol-form [16] to the diphenyllead moiety through the S atoms. Further evidence for this comes from the shift of $\nu(CN)$ to higher and of $\nu(CS)$ to lower wave numbers. This type of bonding is consistent with the high affinity of sulfur to lead.

The values of the nuclear quadrupole splitting parameters ΔE_{exp} , shown in Table 3, strongly suggest that our organotin(IV) dithiolates fall into two structurally distinct classes: (i) R₂SnTDT; (ii) R₂SnDBB, (R₃Sn)₂DBB and (Ph₃Sn)₂TDT.

A solid state trigonal bipyramidal polymeric structure with bridging sulfur atoms, such as I in Fig. 1, has, in fact, been previously assigned [17] to R_2 SnTDT (R = Me, Ph) on the basis of the X-ray crystal and molecular structure of the homologous compound Me₂Sn-ethane-1,2-dithiolate [21,22] as well as of the calculated point-charge model values of ΔE for a series of R_2 Sn^{IV} dithiolates [17]. In the latter context, tetrahedral type structures II, Fig. 1, can be excluded in view of the values of ΔE_{calcd} shown in Table 3.

TABLE 3

Compound ^b	δ^{c} (mm s ⁻¹)	$\frac{\Delta E_{\exp}^{d}}{(\text{mm s}^{-1})}$	Ref.	$\frac{\Delta E_{\text{calcd}}}{(\text{mm s}^{-1})}$	Structure (see Fig. 1)	Ref.
Me ₂ Sn TDT	1.39	2.62	2	-2.33	I	17
-				(±)1.88	II	4
Ph ₂ Sn TDT	1.36	1.93	2)	-1.95	I	17
	1.36	1.99	4 ∫	(±)1.63	II	4
Me ₂ Sn DBB	1.37	1.68	this work	-2.33	I	17
				(±)2.04	II	4
(Me ₃ Sn) ₂ DBB	1.32	1.69	this work	1.75; 1.80 ^f	III	4
				-2.67	IV	this work
Ph ₂ Sn DBB	1.30	1.27	this work	- 1.95	I	17
				(±)1.75	II	4
$(Ph_3Sn)_2TDT$	1.31	1.49	this work	-1.42	111	7
				-2.22	IV	this work
$(Ph_3Sn)_2 DBB$	1.33	1.34	this work	- 1.54	III	this work
				- 2.22	IV	this work

EXPERIMENTAL AND CALCULATED MÖSSBAUER PARAMETERS FOR ORGANOTIN(IV) DITHIOLATES a

^a The experimental parameters were determined at 77 K. The absorber sample thickness was in the range 0.4-0.9 mg ¹¹⁹Sn cm⁻². Full widths at half-height of the resonance peaks are about 0.9 mm s⁻¹. ^b C₇H₆S₂ = TDT²⁻; C₁₀H₁₂S₂ = DBB²⁻. ^c Isomer shift with respect to room temperature SnO₂ or CaSnO₃. ^d Experimental nuclear quadrupole splitting. ^e Calculated point-charge model values [19]. The following partial quadrupole splitting parameters, pqs, mm s⁻¹, have been employed [4,17-20]: Structures I and IV (Fig. 1): (Alk)^{lbe} = -1.13; {Ph}^{lbe} = -0.98; {S}^{lba}_{rdiging} = -0.18; {S}^{lbe} - -0.60 (tba = trigonal bipyramidal apical; tbe = trigonal bipyramidal equatorial). Structures II and III: ([Alk]-[hal])^{tet} = -1.37; ([Ph]-[hal])^{tet} = -1.26; ([S-Alk]-[hal])^{tet} = -0.49; ([S-Ph]-[hal])^{tet} = -0.55. ^f Experimental data used in the estimation of pqs values ([S-Alk]-[hal])^{tet} [4].

Fig. 1. Regular structures of tin sites in organotin(IV) complexes of dithiolates assumed in point-charge model calculations of the nuclear quadrupole splittings ΔE_{calcd} (Tab. 3).

The ΔE_{exp} data for Me₂SnDBB, (R₃Sn)₂DBB (R = Me, Ph) and (Ph₃Sn)₂TDT agree well with the corresponding values [7] of a series of tetrahedral Alk₂Sn(SAlk)₂, R₃SnSAlk and Ph₃SnSPh compounds. In comparison with these values, ΔE_{exp} for Ph₂SnDBB would appear to be particularly low, but it is clearly consistent with a tetrahedral type C₂SnS₂ configuration.

The point-charge model treatment of ΔE parameters confirms the presence of tetrahedral tin environments of type III, Fig. 1, for $(R_3Sn)_2DBB$ and $(Ph_3Sn)_2TDT$ in view of the excellent agreement between the values of ΔE_{exp} and ΔE_{calcd} in Table 3, while excluding [18] the (in principle) possible trigonal bipyramidal structure IV. As far as the R_2SnDBB complexes are concerned the tetrahedral structure II can be definitely assigned to the dimethyltin complex for the same reasons [18], and must be preferred for the diphenyltin complex in view of the better agreement of its ΔE_{exp} value with the corresponding ΔE_{calcd} value; the tbp structure I is excluded in both cases (see Table 3).

The isomer shift data, δ , for the compounds listed in Table 3 seem to be practically independent of whether the assigned structures are trigonal bipyramidal or tetrahedral (vide supra), and essentially correspond to the respective δ data for tetrahedral R₂Sn(SR')₂ and R₃SnSR' compounds [7]. This suggests that two bridging sulfur atoms (in R₂SnTDT, structure I) and one terminal sulfur (in R₂Sn(SR')₂, structure II) have comparable effects in determining the *s*-electron density at the tin nucleus.

The ¹H NMR spectra of all the organometal compounds prepared in this investigation show no SH signals. Chemical shifts and coupling constants ${}^{2}J({}^{119}\text{Sn}^{1}\text{H})$ and ${}^{2}J({}^{207}\text{Pb}^{1}\text{H})$ of methylmetal derivatives are listed in Table 4. In all cases the integration ratio was as expected: the R₃M/dithiolate ratio is 2/1 for the bis(triorganometal) derivatives, and the R₂M/dithiolate ratio is 1/1 for the diorganometal derivatives.

TABLE 4
¹ H NMR DATA FOR METHYLMETAL DITHIOLATES; CHEMICAL SHIFTS $\delta(ppm)$ AND COUPLING CONSTANTS $^2J(^{119}Sn^1H)$ AND $^2J(^{207}Pb^1H)$ (Hz)
(Formula abbreviations see Table 1)

۲ [*] 5				H ₃ C	CH₂−S 、				Ч₃с	-CH2	-SSn(cH ₃)	
d S M(i	CH3)2	•		H₃C ∕/ ́	cH ₂ -S/	4(CH ₃)2			H ₃ c ∕⊣	ĊĦĴ	-S-Sn (CH ₃) ₃	
Compound	γa	δ(Y)	δ(SH)	δ(MCH ₃)	δ(a)	(q)g	δ(c)	¢(d)*	8(e)	8(f)	² 1	Solvent	
H ₂ TDT	CH3	2.22	3.51		1			6.88	7.22	7.26		cDCl ₃	
			3.69										
Me ₂ Sn TDT	CH,	2.20	I	0.96	ł	I	1	6.57	7.11	7.20	60	cDC1,	
H ₂ DMB	+H	6.93-7.18	4.31	·	I	1	ı	6.93-7.18	7.29-	-7.51	ł	cDCI	
Me ₂ Pb DMB	*H	6.64-6.80	ì	0.98	I	1	I	6.646.80	7.22-	-7.38	94	DMSO-d	
H ₂ DBB	I	1	1.84	1	2.23	3.79	7.04	J	I	I	1	$(CD_3)_2CO$	
Me ₂ Sn DBB	I	ł	1	0.22	2.14	3.92	6.93	1	I	ł	99	DMSO-d,	
	1	I	I	0.24	2.20	3.96	7.06	1	ı	ł	61	CDCI,	
(Me ₃ Sn) ₂ DBB	I	1	}	0.38	2.18	3.87	6.91	I	I	I	56	cDCI,	
				0.33	2.11	3.73	6.84				58	DMSO-4,	
Me ₂ Pb DBB	4	I	I	1.13	2.19	4.14	7.03	ł	ł	I	82	$(CD_3)_2CO$	

^a $H^* = Equivalent to H_d$.

.

j

i

48

In the organolead derivatives of H_2DBB there is a significant low field shift of the signals of the CH₂ protons in DBB²⁻, the deshielding being largest in Ph₂PbDBB [δ (CH₂)(in CDCl₃) 4.31 ppm; δ (CH₂) of H₂DBB 3.79 ppm], with respect to Alk₂PbDBB [Alk = Me, Et; δ (CH₂) (in acetone-d₆) 4.14, 4.24 ppm]. The relevant chemical shift value of (Ph₃Pb)₂DBB was found to be δ 4.00 ppm (in CDCl₃). The diorganotin compounds R₂SnDBB [R = Me, Ph; δ (CH₂) (in CDCl₃) 3.96, 3.98 ppm] also show a low field shift, though markedly less than that for R₂PbDBB, and in contrast to the lead compounds there is practically no difference between Me₂SnDBB and Ph₂SnDBB. The complexity of the various factors determining the chemical shift δ (CH₂) (in CDCl₃) 3.87, 3.78 ppm]: the methyl compound, like Me₂SnDBB, shows a distinct, though small low field shift with respect to H₂DBB, while δ (CH₂) for the diphenyltin derivative is practically the same as in H₂DBB.

Coupling constants ${}^{2}J({}^{119}\text{Sn}{}^{1}\text{H})$ for Me₂SnTDT, Me₂SnDBB and (Me₃Sn)₂DBB in CDCl₃ solution are in the range 56 to 61 Hz (Table 4), and correspond to those for other tetracoordinated organotin dithiolates [7]. ¹H NMR spectra of the methyllead derivatives could not be measured in non-coordinating solvents because of insolubility. From a comparison of the coupling constants ${}^{2}J({}^{207}\text{Pb}{}^{1}\text{H})$ for dimethyllead 1,3-dithiolates [7] and Me₂PbTDT [5] with those for Me₂PbDMB in DMSO-d₆ and Me₂PbDBB in (CD₃)₂CO, it is inferred that coordination in all these compounds is greater than four.

Experimental

Because of their thermal instability the lead derivatives were prepared in anhydrous solvents under argon with exclusion of light at -10 to -70° C.

The dithiols were treated with the appropriate diorganometal compounds or lead(II) acetate in 1/1 molar ratio, with the triorganometal compounds in 1/2 molar ratio, and with lead(IV) acetate in 2/1 molar ratio. Lead was determined complexometrically, IR spectra (CsBr, Nujol) were recorded on Perkin-Elmer grating spectrometers PE 457 and PE 580B, Raman spectra on a Coderg laser Raman spectrometer PHO (λ 488 nm; 647.1 nm), and ¹H NMR spectra on a Perkin-Elmer 90 MHz spectrometer R 32 at 37°C. The Mössbauer spectra were obtained as previously described [23]. A Ca¹¹⁹SnO₃ source from the Radiochemical Centre, Amersham (G.B.) was used, moving at room temperature with constant acceleration and triangular waveform. The compounds listed in Table 1 were prepared by one or more of the following procedures.

Procedure 1

A mixture of 0.3 g KOH in 10 ml methanol and 2.5 mmol dithiol in 10 ml methanol was homogenized by shaking at room temperature, and the pH value was adjusted to 7 if necessary by addition of 2 N hydrochloric acid. Solutions of suspensions of 2.5 mmol R_2SnCl_2 (R = Me, Ph) in 10 ml water were added during 0.5 h with vigorous stirring. A white crystalline precipitate separated immediately. After 1 h the precipitate was filtered off, washed with water, dried in vacuo and dissolved in CH_2Cl_2 . The solution was dried over Na_2SO_4 , and the product was precipitated by addition of n-hexane then recrystallized from $CHCl_3$.

Procedure 2

A solution of 2 mmol Ph_2SnCl_2 in 5 ml methanol was added to a mixture of 0.25 g KOH and 5 ml methanol. Ph_2SnO separated immediately. It was washed twice with methanol and added to a solution of 2 mmol dithiole in methanol or $CHCl_3$ within 5 min. After 1 h small amounts of unchanged Ph_2SnO were filtered off, and the clear colorless filtrate was concentrated in vacuo. During this operation a white product separated, and was recrystallized from acetone.

Procedure 3

A solution of 2 mmol dithiol in 15 ml acetone (or methanol or $CHCl_3$) was added during 0.5 h at room temperature with vigorous stirring to a suspension of 4 mmol R_3SnOH (R = Me, Ph) in 15 ml acetone (or methanol or $CHCl_3$). After 1 h the white precipitate was filtered off, dried in vacuo and dissolved in $CHCl_3$. The solution was dried over Na_2SO_4 , concentrated in vacuo, and cooled, and the product was precipitated by addition of n-hexane.

Procedure 4

A solution of 2.5 mmol dithiol in 20 ml absolute methanol (or acetone) was added to solutions or suspensions of 2.5 mmol $R_2Pb(OAc)_2$ (R = Me, Et, Ph) or 5 mmol Ph₃PbOAc in 20 ml absolute methanol (or acetone) at temperatures between 0 and $-30^{\circ}C$. In nearly all cases clear or slightly turbid mixtures were obtained. After 10 to 30 min stirring small amounts of yellow products were filtered off. The clear yellow filtrates were concentrated in vacuo at 0 to $-10^{\circ}C$, and during this operation slightly yellowish white to bright yellow products separated. These were recrystallized from CHCl₃. Most of the products, especially the alkyl derivatives, quickly turned yellow or orange on exposure to light and lost their solubility.

A yellow precipitate was immediately formed from Ph_3PbOAc and toluenedithiol-3,4. It was recrystallized from $CHCl_3$. Lead(IV) and lead(II) acetates were similarly treated with the dithiols. The reactions with H_2DBB had to be performed at about 0°C but other products could also be obtained at room temperature. In all cases yellow to orange finely divided products separated immediately, and were separated on the centrifuge. Because of their insolubility the lead(IV) and lead(II) dithiolates could not be recrystallized.

Acknowledgements

Financial assistance from Fonds der Chemischen Industrie, of the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen, and of Consiglio Nazionale delle Ricerche, Roma, is gratefully acknowledged. We also thank Dr. M. Buschhoff, Schering AG, Bergkamen, for gifts of organotin compounds.

References

- 1 M. Wieber and M. Schmidt, J. Organomet. Chem., 2 (1964) 129.
- 2 L.M. Epstein and D.K. Straub, Inorg. Chem., 4 (1965) 1551.
- 3 R.C. Poller and J.A. Spillman, J. Chem. Soc. (A), (1966) 958.
- 4 R.C. Poller and J.N.R. Ruddick, J. Organomet. Chem., 60 (1973) 87.
- 5 M. Wieber and U. Baudis, J. Organomet. Chem., 125 (1977) 199.
- 6 A.C. Sau, R.O. Day and R.R. Holmes, Inorg. Chem., 20 (1981) 3076.

- 7 K. Grätz, F. Huber, A. Silvestri and R. Barbieri, J. Organomet. Chem., 273 (1984) 283.
- 8 H. Preut, K. Grätz and F. Huber, Acta Cryst., C40 (1984) 941.
- 9 F.H. Fink, J.A. Turner and D.A. Payne, J. Amer. Chem. Soc., 88 (1966) 1571.
- 10 A.C. Sau, R.R. Holmes, K.C. Molloy and J.J. Zuckerman, Inorg. Chem., 21 (1982) 1421.
- 11 T.B. Ktenas and M.D. Taylor, J. Therm. Anal., 25 (1982) 563.
- 12 G. Domazetis, R.J. Magee, B.D. James and J.D. Cashion, J. Inorg. Nucl. Chem., 43 (1981) 1351.
- 13 R.C. Poller and J.A. Spillmann, J. Chem. Soc. (A), (1966) 1024.
- 14 H. Schumann, Z. Anorg. Allg. Chem., 354 (1967) 192.
- 15 H. Schumann and P. Reich, Z. Anorg. Allg. Chem., 375 (1970) 72.
- 16 G. Peyronel, A. Pignedoli and W. Malavasi, Spectrochim. Acta, A32 (1976) 1015; and refs. therein.
- 17 R. Barbieri, A. Silvestri, F. Di Bianca, E. Rivarola and R. Cefalù, Mössbauer Effect Reference and Data Journal, 6 (1983) 69; and refs. therein.
- 18 M.G. Clark, A.G. Maddock and R.H. Platt, J. Chem. Soc., Dalton Trans., (1972) 281.
- 19 G.M. Bancroft and R.H. Platt, Adv. Inorg. Chem. Radiochem., 15 (1972) 59.
- 20 G.M. Bancroft, V.G. Kumar Das, T.K. Sham and M.G. Clark, J. Chem. Soc., Dalton Trans., (1976) 643.
- 21 M. Dräger, Z. Anorg. Allg. Chem., 477 (1981) 154.
- 22 A.S. Secco and J. Trotter, Acta Cryst., C39 (1983) 451.
- 23 A. Silvestri, E. Rivarola and R. Barbieri, Inorg. Chim. Acta, 23 (1977) 149; and refs. therein.